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ABSTRACT 

 

Crying is infants utilize to express their emotional state. It provides the parents and the 

nurses a criterion to understand infants’ physiology state. Many researchers have analyzed infants’ 

crying sounds to diagnose specific diseases or define the reasons for crying. This thesis presents 

an automatic crying level assessment system to classify infants’ crying sounds that have been 

recorded under realistic conditions in the Neonatal Intensive Care Unit (NICU) as whimpering or 

vigorous crying. To analyze the crying signal, Welch’s method and Linear Predictive Coding (LPC) 

are used to extract spectral features; the average and the standard deviation of the frequency signal 

and the maximum power spectral density are the other spectral features which are used in 

classification. For classification, three state-of-the-art classifiers, namely K-nearest Neighbors, 

Random Forests, and Least Squares Support Vector Machine are tested in this work, and the 

experimental result achieves the highest accuracy in classifying whimper and vigorous crying 

using the clean dataset is 90%, which is sampled with 10 seconds before scoring and 5 seconds 

after scoring and uses K-nearest neighbors as the classifier. 
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CHAPTER 1: INTRODUCTION 

 

Adults can self-report their pain experience. But, how can an infant express how much pain 

s/he suffered? Crying is one way an infant nonverbally communicates with others; crying contains 

information about infant’s status [1]. Nurses in the neonatal intensive care unit (NICU) 

traditionally use different pain scales to evaluate an infant’s pain state. Along with other indicators, 

crying is used as the main indicator in several pain scales. However, crying evaluation is subjective. 

It can be easily affected by other factors or the observer’s experience [2, 3]. Even during different 

observations, the same observer can give different results. Machine-based automatic crying 

evaluation is a good way to provide consistent assessment and to minimize biased appraisals. A 

machine-based automatic crying evaluator can also be used in monitoring infants in the NICU or 

house care. Furthermore, it is a good way to improve the quality of medical service in places which 

lack medical facilities. 

1.1 Prior Works 

Existing works in automatic analysis of infants’ crying sounds focus on either determining 

the reason an infant cries [4-8] or pathological diagnosing [1, 9-14]. There is not aware of any 

research that assesses different levels of infants’ cry. Xie et al. presents H-value, which is driven 

by the mode of crying representation in crying signal with a hidden Markov model based classifier 

to assess infants’ level of distress [15]. Chang et al. extract 15 features from time domain and 

frequency domain in the incremental learning Support Vector Machines infant crying recognition 

system [4]. The system selects four features in estimating different causes of infant crying. The 
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average accuracy in predicting why the infant cries is 85%, and the accuracy of estimating if the 

infant is in pain or no pain is 82%. Mima and Arakawa propose a rule-based system for classifying 

infants’ crying reason between hunger, sleepiness, and discomfort [5]. They analyze the shape of 

power spectrum of crying signal and achieve 85% accuracy in classifying infants’ crying reasons. 

Vempada et al. combine spectral and prosodic features and use them to train the crying pattern 

with Support Vector Machines (SVM) [6]. The recognition performance of using spectral features 

and prosodic features in detecting pain or no pain are 31% and 83%, and the performance in 

recognizing crying signal with pain by using two different type of features is 81%. Petroni et al. 

use Mel Frequency Cepstral Coefficients (MFCC) as the features in infants’ crying classification 

with artificial neural networks [7]. They achieve the accuracy of 90% in predicting if an infant is 

in pain. Barajas-Montiel and Reyes-Garcia ensemble AdaBoost algorithm in Neural Network and 

SVM to classify the cries as pain or no pain and hunger or no huger [8]. They obtain 96% accuracy 

in classifying pain or no pain using ensemble Neural Network as classifier and MFCC as the 

feature. 

 Reyes-Galaviz and Reyes-Garcia compare the performance between extracting the 

features of using LPC (Linear Prediction Coding) and MFCC and classify with neural networks 

[1]. The result shows 76% precision in diagnosing normal, deaf, or asphyxia infant with LPC after 

2,000 training epochs and 86% precision in diagnosis with MFCC after 1,414 training epochs. 

Zabidi et al. generate the model to distinguish infants with hypothyroidism from crying [9]. They 

extract MFCC as the feature and select it directly or with Fisher’s Ratio (F-Ratio) analysis. Using 

Multilayer perceptron (MLP) neural network as classifier, they achieve 89% classification 

accuracy with performing F-Ratio in MFCC selection. Reyes-Galaviz et al. present an infant crying 

recognizer with feed forward input delay neural network to recognize normal cry and pathological 
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cry from Cuban and Mexican infants [10]. Their experiment, which uses MFCC as the feature, 

obtain almost 100% accuracy in recognizing normal cry and pathological cry from Mexican infants. 

Saraswathy et al. try Probabilistic Neural Network (PNN) and General Regression Neural Network 

(GRNN) in classifying cries from normal infants, deaf infants, and infants with asphyxia [11]. 20 

features are extracted from short-time Fourier transform. Both PNN and GNN achieve 99% 

classification results. Garcia and Reyes-Garcia present an infant crying recognition system using 

MFCC as the feature and feed forward neural network as classifier with several learning methods 

in training [12]. They aim to classify normal infants and deaf infants from their cries. Scaled 

Conjugate Gradient neural network results the better accuracy with 97% in their experiment. 

Lederman et al. use MFCC as the feature and classify with Continuous Density Hidden Markov 

Models [13]. They attempt to determine the cries are from the healthy infants or the infants who 

experienced RDS (Respiratory Distress Syndrome) and the infants with or without palatal plate. 

The diagnosis accuracy of the infants with RDF is 63%, and the mean correct classification of the 

infants with or without palate plate is 57% with subject independent tests (all cries are from the 

same age group). Santiago-Sanchez et al. present a type-2 fuzzy sets based pattern matching 

method for classifying infant crying [14]. This work uses cochleograms, intensity, LPC, and 

MFCC as the features and achieves 85%, 61%, 89%, and 79% precision respectively when 

classifying crying patterns between normal, asphyxia, and hyperbilirubinemia infant.  

1.2 Crying Level Assessment System 

This work presents an audio frequency based infant crying classification scheme. The goal 

is to provide the nurse an appraisal of the level of infant crying when assessing infants’ pain state 

during a procedure. The infants crying dataset in this work was recorded during medical 

procedures in the NICU which includes significant noise, such as human speech, machine sound, 



www.manaraa.com

  4 

 

knocking sound, and other infants’ crying. I classify crying episodes as either whimpering or 

vigorous crying, and test using different sampling lengths of crying episode. 

In the next chapter, I will introduce a speaker recognition system which is re-implemented 

in this work. The algorithm of the crying level assessment system is introduced in chapter 3. The 

infants crying dataset is described in chapter 4. Chapter 5 and chapter 6 are the experiment setup 

and the experimental results of both my method and the speaker recognition system. The summary 

and the discussion are listed in chapter 7.  
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CHAPTER 2: BACKGROUND 

 

Yang and Jing propose a speaker recognition system using SVM-VQ [16]. Multiple 

features, which include pitch, LPCC, ∆LPCC, MFCC, and ∆MFCC, are extracted from the TIMIT 

speech database [17]. 

2.1 LPC, LPCC, and ∆LPCC 

LPC is widely used in audio signal processing to represent the spectral features. It 

compresses the audio signal within the spectral envelope. LPC-derived cepstral coefficients 

(LPCC) is commonly used in short time period spectral analysis. An 𝑝 order LPC system with 𝑛 

sampling points signal 𝑠(𝑛) is shown: 

𝑠(𝑛) = ∑ 𝑎𝑘𝑠(𝑛 − 𝑘) + 𝑒(𝑛)𝑝
𝑘=1 .   (2.1) 

𝑒(𝑛) is prediction error, and 𝑎𝑘 is the linear predictor coefficients. To express it in 𝑧 field, 

𝑆(𝑧) = ∑ 𝑎𝑘𝑧−𝑘𝑆(𝑧) + 𝐸(𝑧)𝑝
𝑘=1 ,   (2.2) 

and the system transfer function is calculated as 

𝐻(𝑧) =
𝑆(𝑧)

𝐸(𝑧)
=

1

∑ 𝑎𝑘𝑧−𝑘𝑝
𝑘=1

=
1

𝐴(𝑧)
.   (2.3) 

LPC can be solved by Levinson-Durbin algorithm. 

{
𝑎𝑖

(𝑖)
= 𝑘𝑖                                                    

𝑎𝑗
(𝑖)

= 𝑎𝑗
(𝑖−1)

− 𝑘𝑖𝑎𝑖−𝑗
(𝑖−1)

,     1 ≤ 𝑗 ≤ 𝑖
  (2.4) 

Once LPC coefficients are solved, LPCC can be derived  

𝑐𝑚 = 𝑎𝑚 + ∑
𝑘

𝑚
𝑐𝑘𝑎𝑚−𝑘

𝑚−1
𝑘=1 ,  1 ≤ 𝑚 ≤ 𝑝,  (2.5) 
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and the delta-cepstral coefficients (∆LPCC) are calculated with 

∆𝑐𝑚(𝑡) = ∑ 𝑖 × 𝑐𝑚(𝑡 + 𝑖)1
𝑖=−1 , 1 ≤ 𝑚 ≤ 𝑝.  (2.6) 

2.2 MFCC and ∆MFCC 

MFCC is a representation of power spectrum in short time period. It is based on the 

characteristics of the critical bandwidths. In extracting MFCC, the length of Hamming windows 

is 30ms with 10ms shifting. FFT is sampled with 1,024 points, and the number of Mel-filter bank 

is 24. An 𝑚  order MFCC coefficients are obtained with logarithmic and Discrete Cosine 

Transform (DST) by 

𝑐𝑚 = √
2

𝑁
∑ cos [𝑚

𝜋

𝑁
(𝑘 −

1

2
)] log10 𝑋𝑘

𝑁
𝑘=1 ,   (2.7) 

where 𝑁  is the number of Mel-filters and 𝑋𝑘  is the 𝑘 th output of the filter. ∆MFCC can be 

computed by formula (2.6). 

2.3 SVM-VQ 

Lebrun, et al. first used Vector Quantization (VQ) with Support Vector Machines (SVM) 

to simplify the training set by mapping pixels to representative prototype [18]. Yu, et al. used 

SVM-VQ, which combines Vector Quantization and Support Vector Machines, to deal with high 

dimensioned imbalanced data by compressing the majority class [19]. It compresses the data using 

Vector Quantization and classifies with SVM. 

2.3.1 Vector Quantization (VQ) 

Vector Quantization is a classical signal quantization technique. It divide a set of vectors 

into groups with Nearest Neighbor condition. Each vector within a group can be represented by a 

prototype vector. Suppose 𝑀  training vectors, 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑀}, and 𝑁  code vectors, 𝐶𝑉 =

{𝑐𝑣1, 𝑐𝑣2, … , 𝑐𝑣𝑁} , all training vectors can be grouped in 𝑁  sub-regions, 𝑆 = {𝑆1, 𝑆2, … , 𝑆𝑁} . 
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Vectors 𝑥𝑚  within region 𝑆𝑛 can be represented by code vector 𝑐𝑣𝑛 , which also represents the 

center of region 𝑆𝑛. 𝑥𝑚 should satisfy 

𝑆𝑛 = {𝑥𝑚: ‖𝑥𝑚 − 𝑐𝑣𝑛‖2 ≤ ‖𝑥𝑚 − 𝑐𝑣𝑛′‖2}, ∀𝑛′ = 1,2, … , 𝑁, (2.8) 

and 

𝑐𝑣𝑛
𝑑 =

∑ 𝑥𝑚
𝑑

𝑥𝑚∈𝑆𝑛

∑ 1𝑥𝑚∈𝑆𝑛

, ∀d = 1,2, … , 𝐷  (2.9) 

with D  is the dimension of the vector. Hence, 𝑐𝑣𝑛 = {𝑐𝑣𝑛
1, 𝑐𝑣𝑛

2, … , 𝑐𝑣𝑛
𝐷}  and 𝑥𝑚 =

{𝑥𝑚
1 , 𝑥𝑚

2 , … , 𝑥𝑚
𝐷 }. 

2.3.2 Support Vector Machines (SVM) 

SVM transforms the low-dimensional nonlinear problem into a higher-dimensional linear 

problem. It can be treated as a linear learning machine in the higher-dimensional linear feature 

space. The quantized training vectors from VQ are used to build the training model in SVM with 

the vector of class labels, 𝑌 = {𝑦1, 𝑦2, … , 𝑦𝑀} ∈ {−1,1}. The optimization problem of SVM is 

written as 

min
𝑤,𝜉,𝑏

𝐽1(𝑤, 𝜉) =
1

2
𝑤𝑇𝑤 + 𝐶 ∑ 𝜉𝑖

𝑀
𝑖=1 ,   (2.10) 

which subject to 𝑦𝑖(𝑤𝑇𝜑(𝑥𝑖) + 𝑏) ≥ 1 − 𝜉𝑖  and 𝜉𝑖 ≥ 0  for 𝑖 = 1, … , 𝑀 , where 𝜑(𝑥𝑖)  is a 

mapping function which converts vector 𝑥𝑖 to a high-dimensional feature space, 𝑤 is an unknown 

vector with the same dimension as 𝜑(𝑥𝑖), 𝐶 > 0 defines the trade-off between a large margin and 

classification error in the cost function, and 𝜉𝑖 indicates the distance between 𝑥𝑖 and the decision 

boundary. The decision function of SVM is formed as 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝑦𝑖𝛼𝑖𝐾(𝑥, 𝑥𝑖)
#𝑆𝑉
𝑖=1 + 𝑏),  (2.11) 

where #𝑆𝑉  represents the number of support vectors, 𝛼𝑖  specifies the coefficients of the 

hyperplane, and 𝐾(𝑥, 𝑥𝑖) is the kernel function. 
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2.3.3 Least Squares Support Vector Machines (LS-SVM) 

Instead of solving a quadratic problem and using unequal constraints in SVM, LS-SVM 

uses a least squares loss function and equality constraint to reduce the complexity [20, 21]. 

Different from the optimization problem of SVM (formula 2.10), LS-SVM optimizes the problem: 

min
𝑤,𝑒,𝑏

𝐽2(𝑤, 𝑒) =
1

2
𝑤𝑇𝑤 + 𝛾

1

2
∑ 𝑒𝑖

2𝑀
𝑖=1 ,  (2.12) 

subject to 𝑦𝑖(𝑤𝑇𝜑(𝑥𝑖) + 𝑏) ≥ 1 − 𝑒𝑖  for 𝑖 = 1, … , 𝑀, where 𝑒𝑖  is the error variable to tolerate 

misclassification and 𝛾 is the positive regularization constant. LS-SVM classifier is given by 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝑦𝑖𝛼𝑖𝐾(𝑥, 𝑥𝑖)
𝑀
𝑖=1 + 𝑏),  (2.13) 

which is similar to SVM (formula 2.11).  

2.4 Yang’s Speaker Recognition System 

Instead of using SVM, Yang’s speaker recognition system compresses the features with 

trained codebook using vector quantization and classifies the compressed feature using LS-SVM. 

In extracting LPCC, Hamming window of 32ms is used that shifts every 16ms. Yang and Jing 

compare the performance when using different features. Their experiment shows that using LPCC 

(92% recognition rate) or MFCC (90% recognition rate) alone as the feature has higher 

performance. Combining pitch with LPCC or MFCC, the recognition rate has only 1% 

improvement in recognizing the speaker [16]. 

In this work, I will implement Yang’s speaker recognition system. The codebook size is 

32, and the codebook is trained with the infants crying dataset which is used in this work. The 

performance of classifying the infants crying dataset with Yang’s speaker recognition system is 

compared with the proposed crying level assessment system. 
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CHAPTER 3: PROPOSED ALGORITHM 

 

In this work, I extract LPC, mean, standard deviation (STD), and the maximum power 

spectral density (Pmax) as the features with frequency analysis and power spectrum analysis. Figure 

3.1 shows the system schema of the crying level assessment system. Experiments on the input 

signal are performed with two different sizes of windows. 

 

 

Figure 3.1 System schema 

 

3.1 Windowing Signal 

Audio signals are stable in short intervals [4]. Hence, I divide the segmented audio signal 

(episode) into several consecutive 20-millisecond windows. Frequency analysis is performed on 

each 20-millisecond window individually. In power spectrum analysis, I use 5-second windows to 

analyze the power spectral density in a longer time period. For each episode, I have performed two 

Window 

(5s) 

Window 

(20ms) 

LPC 

Mean 

STD 

Pmax 

Classifier 
Frequency Analysis 

Power Spectrum Analysis 

Input Signal Feature Extraction Classification 
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different windowing schemes. The first scheme is without overlapping between consecutive 

windows, and the second one has 50%-overlapping on the two neighboring windows. 

3.2 Feature Extraction 

To extract the feature vectors, I provide frequency analysis with short intervals and power 

spectrum analysis with a longer time period to extract the features. The frequency with the 

maximum energy is analyzed in frequency analysis. 

3.2.1 Frequency Analysis 

An input signal is divided into several consecutive 20-millisecond windows. Each window 

will be analyzed with Welch’s Method [22] and have a frequency with the highest power spectral 

density. With these frequencies from the windows, I extract the spectral features and the linear 

predictive coefficients. 

Welch’s method divides the time signal into blocks and forms the periodogram. The 𝑚th 

window from the signal 𝑥 can be denoted as 

𝑥𝑚(𝑛) ≜ 𝑤(𝑛)𝑥(𝑛 + 𝑚𝑅), 𝑛 = 0,1, … , 𝑀 − 1, 𝑚 = 0,1, … , 𝐾 − 1, (3.1) 

where 𝑅 is the window shifting size, 𝑤(𝑛) is the window function which contains 𝑀 nonzero 

samples, and 𝐾 is the number of available frames. The periodogram can be shown as 

𝑃𝑥𝑚,𝑀(𝑤𝑘) =
1

𝑀
|𝐹𝐹𝑇𝑁,𝑘(𝑥𝑚)|

2
≜

1

𝑀
|∑ 𝑥𝑛(𝑛)𝑒−𝑗2𝜋𝑛𝑘 𝑁⁄𝑁−1

𝑛=0 |
2

, (3.2) 

and the estimated power spectral density is given by 

𝑆̂𝑥
𝑊(𝑤𝑘) ≜

1

𝐾
∑ 𝑃𝑥𝑚,𝑀(𝑤𝑘)𝐾−1

𝑚=0 .   (3.3) 

Specifically, each window is analyzed with Welch’s Method to extract the frequency with 

the highest power. Figure 3.2 illustrates the procedure of frequency analysis, and the windowing 

scheme without overlapping. Each episode will generate a frequency sequence which contains all 

the frequencies extracted from the windows. Figure 3.2 (a) shows two 20-millisecond windows 
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out of a total of 500 windows over a 10-second audio signal (episode). The power spectral density 

(PSD) of frequencies in a window is analyzed with Welch’s method, and is shown in Figure 3.2 

(b). I extract the frequency with the maximum power density which is the peak in the window. 

Figure 3.2 (c) is the extracted frequency sequence which has 500 frequencies of an episode. I also 

compute the mean and the standard deviation of the frequencies in each episode as spectral features. 

Two frequency sequences are generated in frequency extraction, one with non-overlapping 

windows and one with 50%-overlapping windows. The spectral features, which are the mean and 

standard deviation, were also extracted from the non-overlapping and 50%-overlapping windows 

of episodes. 

LPC coefficients can be derived by formulas 2.1 to 2.4. Instead of extracting a set of 

coefficients in each window, which is normally used in audio signal processing, I extract LPC 

coefficients from each frequency sequence I described above. 

 

 
Figure 3.2 Schematic diagram of frequency analysis. (a) Audio signal (10-second episode) with 

two 20-millisecond-windows (b) The power spectral density of each frequency in two windows 

with frequency analysis using Welch’s method (c) Frequencies with the maximum PSD of all 

windows in an episode (500 windows) 
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3.2.2 Power Spectrum Analysis 

Instead of analyzing the signal features in short interval, power spectrum analysis attempt 

to analyze the PSD of frequencies in a longer period. Since the noises with high PSD usually 

appear in the short time period, and infants’ crying sounds continue longer than the noises, the 

segments with crying sounds can be distinguished with the higher PSD in a larger window. In each 

5-second window, I utilize Welch’s method to analyze the power spectral density and get the 

maximum PSD since the crying signal should be louder than others. 

3.2.3 Feature Vectors 

Table 3.1 lists the feature vectors with non-overlapping window schema and 50%-

overlapping window schema. The different numbers of LPC coefficients are tested in the 

experiment to determine the higher classification accuracy. The testing range of the coefficients is 

from 10 to 30. Mean and standard deviation of frequency sequence are two single-features, and 

the number of maximum power spectral densities are varied by the lengths of episode and the 

windowing scheme. 

 

Table 3.1 Feature vectors 

V1 
Non-overlapping 
windows 

LPC coefficient sequence 
Mean of frequency sequence 
Standard deviation of frequency sequence 
Sequence of maximum power spectral density 

V2 
50%-overlapping 
windows 

LPC coefficient sequence 
Mean of frequency sequence 
Standard deviation of frequency sequence 
Sequence of maximum power spectral density 
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CHAPTER 4: INFANTS CRYING DATASET 

 

The data is recorded and collected in Tampa General Hospital using GoPro Hero 3 plus, 

and the audio is extracted using VLC media player as the infants crying dataset. The audio 

sampling rate is 48 kHz. Subjects’ average age is 36 gestational weeks. This dataset has a total of 

27 subjects which are recorded during 32 acute painful procedures, and the total number of 

episodes with the ground truth from nurses is 128. 

4.1 Data Collection 

Each sample is recorded under an acute painful procedure, and the pain assessments are 

given in seven time periods (episodes): 

 5 minutes before procedure to be the baseline. 

 Start the procedure. 

 1 minute after completing the procedure. 

 2 minute after completing the procedure. 

 3 minute after completing the procedure. 

 4 minute after completing the procedure. 

 5 minute after completing the procedure. 

Neonatal Infant Pain Scale (NIPS) which has six pain indicators [23] is used in assessing 

infants’ pain state in this project and is given by the expert nurses as the ground truth of each 

episode. In NIPS, crying indicator can be scored as 0 (no cry), 1 (whimper), and 2 (vigorous crying). 

Since this work only focuses on classifying whimpering and vigorous crying episodes, 14 
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whimpering episodes and 20 vigorous crying episodes are used in this work; other episodes do not 

have crying sounds and thus are excluded from further analysis. Each episode is extracted with 

eight sub-samples which are the different time interval combinations. They are sampled with 0, 5, 

10, or 15 seconds before the nurse giving the score and 5 or 10 seconds after scoring. Summary of 

these intervals is given in Table 4.1, and SS1 to SS8 are eight sub-samples of an episode. Normally, 

the nurse observes the infant for 15 seconds before giving the score, and the infant state may 

change within 5 seconds, which is SS4. 

 

Table 4.1 Time interval combinations of sub-sample 

 Before After 
0 sec 5 sec 10 sec 15 sec 5 sec 10 sec 

SS1 V    V  
SS2  V   V  

SS3   V  V  
SS4    V V  
SS5 V     V 

SS6  V    V 
SS7   V   V 

SS8    V  V 

 

4.2 Clean Data and Additional Ground Truth 

Since some episodes of the original infants crying dataset are too noisy and will affect the 

classification, I eliminated 13 noisy episodes to get a clean dataset. Also, to enlarge the dataset, I 

use the original dataset and add additional ground truths to new episodes which are sampled every 

20 seconds between two scored episodes in the original dataset. In Figure 4.1, episode 1 and 

episode 2 are sampled from the original dataset and episode 1-1 and episode 1-2 are the additional 

episodes between episode 1 and episode 2. In this larger dataset, I only keep the episodes with the 

last 5 seconds which are the time giving score with no noise. The first 15 seconds (the observation 

time) can be either noisy or quiet. The scores of the additional episodes which do not have score 
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in the original dataset are not given by the trained nurses. As seen in Figure 4.1, only episode 1 

and episode 2 are scored by the nurses. Following the same scoring procedure (observe the infant 

for 15 seconds and give the score), I label episode 1-1 and episode 1-2 as either whimpering or 

vigorous crying. The number of episodes of the original dataset, the clean dataset, and the 

additional dataset are listed in Table 4.2. 

 

Table 4.2 Number of episodes of each class in each dataset 

 Original Clean Additional 

Whimper 14 7 71 

Vigorous crying 20 14 94 

Total 34 21 165 

 

 

Figure 4.1 Example of having additional episodes 

  

Original 

Dataset 

Additional 

Dataset 
episode 1 episode 1-1 episode 1-2 episode 2 

episode 1 episode 2 

Additional episodes 
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CHAPTER 5: EXPERIMENT SETUP 

 

This chapter will introduce the classifiers and classification strategy. The experiment of the 

crying level assessment system and Yang’s speaker recognition system is implemented with 

Matlab 2013b. 

5.1 Classifiers 

In this work, I use three classifiers, K-nearest Neighbors (KNN), Random Forests, and 

Least Squares Support Vector Machines (LS-SVM). 10 to 30 LPC coefficients and different K’s 

(1 to 9) are tested in training step to determine the best number of coefficients. 

5.1.1 K-nearest Neighbors 

K-nearest-neighbor is a simple nonparametric classification method [24]. It classifies a 

sample to the majority class which is observed from the kth nearest neighbors in the feature space. 

The time complexity of training K-nearest neighbors model is  knnd  , where n , d , and k  

are the number of instances, data dimension, and the number of neighbors, respectively. In this 

work, I train k from one to nine.  

5.1.2 Random Forests 

Random Forests is an extension of machine learning classifier which include the bagging 

to improve the performance of Decision Tree. It combines tree predictors, and trees are depended 

on a random vector which is independently sampled. The distribution of all trees are the same. 

Random Forests splits nodes using the best among of a predictor subset that are randomly chosen 

from the node itself, instead of splitting nodes based on the variables [25, 26, 27]. The time 
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complexity of the worst case of learning with Random Forests is   ndnM log , where M  is 

the number of growing trees, n  is the number of instances, and d  is the data dimension. In this 

work, the number of growing trees is 100. 

5.1.3 Least Squares Support Vector Machines  

Support vector machine (SVM) is a powerful machine learning tool and has been wildly 

used in pattern recognition. LS-SVM is a least squares version of SVM. LS-SVM considers the 

equality constraints using a quadratic error function. Instead of solving quadratic programming, 

LS-SVM solves the system of linear formulas. The time complexity of LS-SVM is   dn,min
3

  , 

where n  and d  are number of instances and data dimension [20, 21, 28, 29]. In this work, both 

my method and Yang’s method use linear kernel. 

5.2 Model Evaluation 

In this experiment, 10-fold cross validation is used as the strategy. In each training folds, I 

do parameters selection to decide the number of extracted coefficients in LPC for all classifiers 

and K for K-nearest Neighbors. 

5.2.1 10-fold Cross Validation 

10-fold cross validation splits instances into 10 folds (1 for testing set and 9 for training 

set). I perform ten 10-fold cross validation on all subjects (1st level 10-fold CV) and average the 

results. Since I want to determine the better number of LPC coefficients and K for K-nearest 

Neighbors, I do another 10-fold cross validation in training set (2nd level 10-fold CV) for parameter 

selection. Parameter selection is done by each pair of testing set and training set of 1st level 10-

fold CV. Then the parameters will be fed back to the 1st level to do classification. Figure 5.1 is the 

pseudo-code of the 10-fold cross validation with parameter selection procedure. 
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1st level 10-fold CV 

1. Testing set (1 fold): pick one fold 

2. Training set (9 folds): remaining folds 

2nd level 10-fold CV (parameter selection) 

2.1.Spilt training set into 10 folds 

2.2.Try different number of LPC coefficients (Ns) in feature extraction 

2.3.Do classification and record the performance (If using K-nearest 

Neighbors, try different Ks.) 

2.4.Find out the parameters (N and K) with the highest performance 

End 

3. Extract feature vector with trained N on both testing set and training set 

4. Do classification 

End 

Figure 5.1 10-fold cross validation with parameter selection procedure 

 

5.2.2 10 Folds Selecting Procedure 

In the infants crying dataset, each sample (procedure) has different number of episodes 

with different classes, and some subjects are recorded in multiple samples. I use a procedure to 

split the instances (samples) into 10 folds by subject. In order to limit the overfitting problem, 

instances which belong to the same subject will be assigned to only one fold. The episodes of each 

class are evenly assigned to each fold with this procedure. 

Figure 5.2 shows the flow chart of the procedure. All subjects are in the same group before 

starting the procedure. I first count the episodes of each class in all subjects. Select an empty fold, 
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then I assign all instances which belong to the subject with the most episodes in any class to the 

selected fold. Compute the number of episodes of each class in the selected fold. To choose the 

next subject, I generate a candidate list which includes all the unselected subjects. Next, I filter out 

the subject from the candidate list with the following rules in order: (Fold limitation is 10% of the 

instances. Class limitations are 10% of the episodes which are labeled as each class. Each class 

has its own class limitation.) 

(a) The selected fold should not reach the class limitations. If the numbers of episodes of every 

class in the selected fold reach class limitations, but the fold does not reach the fold 

limitation, mark the fold ‘not-full.’ Then I stop assigning subjects to this fold and find the 

next empty fold. 

(b) If it is the last space in the selected fold (one more instance to reach fold limitation), and 

all the episodes in this fold are labeled as the same class, filter out all subjects which do 

not have the missing class or have multiple instances. Then skip rule (c). 

(c) Check the class limitation on each class in the selected fold. Filter out the subjects which 

will make the selected fold exceed the class limitations. 

(d) The candidate list can not be empty. If it is empty, mark the selected fold as ‘need-class,’ 

stop assigning subjects to this fold, and find the next empty fold. 

If the selected fold passes rule (a) and (d), randomly select a subject in the candidate list, and assign 

it to the fold. Make a new candidate list and do the filtering again until the number of subjects in 

the selected fold reach the fold limitation, or the fold violate rule (a) or (d). Pick another empty 

fold and continue the subject assigning procedure until there is no empty fold. If there are un-

assigned subjects but no empty folds, I assign them based on the insufficient class of the folds. 

Check the ‘need-class’ fold, and randomly assign the subjects which have the episodes with the 
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class that the fold needs, if it does not reach the fold limitation. The ‘not-full’ folds which reach 

all class limitations but does not reach the fold limitation will be filled with the remaining subjects 

in the final step. 

 

 
Figure 5.2 Flow chart of 10 folds selecting procedure. (Each subject has multiple episodes, and 

each episode is labeled as either whimpering or vigorous crying) 

  

Pick an empty fold 

Assign the subject with the 

most episodes in any class to 

the selected fold 

Generate candidate list 

Do filtering on candidate list 

with the selected fold following 

rule (a) to rule (d) 
Randomly select a subject from 

candidate list and assign it to 

the selected fold 

 

Violate rule (a) or (d) 

Randomly assign the 

remaining subjects with the 

specific class to the ‘need-

class’ folds 

Randomly assign the remaining 

subjects to the ‘not-full’ folds 

Count the episodes with the 

classes in all subjects 

Reach fold limitation?  Find other empty fold? 
Yes Yes No 

No 
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CHAPTER 6: EXPERIMENTAL RESULTS 

 

This section will report the experimental results with three classifiers in my crying level 

assessment system and the results of classifying the infants crying dataset with Yang’s speaker 

recognition system [16]. 

6.1 Results of Original Dataset 

Table 6.1 lists the accuracies of classifying with K-nearest Neighbors (KNN), Random 

Forests, and Support vector machine (SVM). V1 and V2 are the feature vectors with non-

overlapping window schema and 50%-overlapping window schema. SS1 to SS8 are eight different 

sampling length of an episode. The number of parameters of each feature vector are listed in Table 

6.2, and Table 6.3 lists K’s for K-nearest Neighbors. The highest accuracy of classifying infant 

crying level under realistic conditions is 76.47%, which adapts with K-nearest Neighbors with SS7, 

which is the sampling length combining 10 seconds before giving score and 10 seconds after giving 

score, and V1 (feature vector with non-overlapping windowing scheme). The performance with 

the highest classification accuracy which uses KNN with V1 and SS7 is shown in Figure 6.1 using 

receiver operating characteristic (ROC curve). Table 6.4 shows the performance of the highest 

accuracy in each classifier. Also, comparing recall, my method has higher performance to 

predicting vigorous crying than whimpering. 
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Table 6.1 Classification accuracy of the original dataset 

 KNN Random Forests LS-SVM 

 V1 V2 V1 V2 V1 V2 

SS1 66.47% 62.35% 61.76% 53.53% 65.29% 53.24% 

SS2 66.18% 73.82% 74.41% 72.94% 42.65% 59.12% 

SS3 60.59% 65.88% 72.65% 71.76% 62.65% 48.24% 

SS4 72.35% 70.59% 65.29% 66.47% 63.53% 47.94% 

SS5 57.65% 62.35% 67.06% 70.00% 68.24% 58.82% 

SS6 73.82% 72.35% 72.35% 72.06% 69.71% 64.12% 

SS7 76.47% 74.41% 75.88% 71.18% 67.65% 43.82% 

SS8 61.47% 61.18% 68.24% 65.59% 66.47% 47.06% 

 

Table 6.2 Number of parameters of three classifiers with the original dataset 

 KNN Random Forests LS-SVM 

 V1 V2 V1 V2 V1 V2 

SS1 13 13 17 17 21 13 

SS2 14 15 31 21 31 34 

SS3 15 17 18 22 33 28 

SS4 16 19 16 26 21 36 

SS5 14 15 15 17 17 29 

SS6 15 17 26 26 34 37 

SS7 16 19 35 27 20 31 

SS8 17 21 20 21 22 30 

 

Table 6.3 K for K-nearest neighbors with the original dataset 

 KNN 

 V1 V2 

SS1 3 6 

SS2 7 3 

SS3 3 4 

SS4 8 3 

SS5 4 5 

SS6 5 5 

SS7 7 6 

SS8 7 8 
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Table 6.4 Performance of the highest accuracy in each classifier with the original dataset 

 KNN Random Forests LS-SVM 

Whimper 
Vigorous 

Crying 
Whimper 

Vigorous 

Crying 
Whimper 

Vigorous 

Crying 

Recall 64.29% 85.00% 60.71% 86.50% 65.00% 73.00% 

Precision 75.00% 77.27% 75.89% 75.88% 62.76% 74.87% 

 

 
Figure 6.1 ROC curves with the original dataset using KNN with V1 and SS7 

 

6.2 Results of Clean Dataset 

Table 6.5 is the classification result with the clean dataset, which is smaller than the original 

dataset. The number of parameters and K for K-nearest Neighbors are listed in Table 6.6 and Table 

6.7. Adapting with K-nearest Neighbors using SS3 and V1 achieves the highest accuracy (90%) 

in classifying infant crying with the clean dataset. The ROC curves of KNN with V1 and SS3 is 

shown in Figure 6.2, and the performance is shown in Table 6.8. 

Comparing the best result in the original dataset (76.47%) with the clean dataset (90%), 

using the clean dataset has significant improvement in the classification accuracy. It points out that 

ambient noises have significant effects on classifying infant crying as whimpering or vigorous 

crying. Also, using the clean dataset increases the performance (recall and precision) in all 

classifiers except LS-SVM. Recall (sensitivity) of vigorous crying is increased in using the clean 

dataset. 
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Table 6.5 Classification accuracy of the clean dataset 

 KNN Random Forests LS-SVM 

 V1 V2 V1 V2 V1 V2 

SS1 77.14% 66.19% 69.05% 61.90% 55.24% 50.48% 

SS2 80.48% 74.76% 79.52% 70.48% 56.19% 38.10% 

SS3 90.00% 72.86% 75.71% 72.38% 60.48% 58.57% 

SS4 76.19% 85.71% 80.00% 78.57% 69.52% 62.86% 

SS5 70.00% 66.19% 70.95% 73.81% 55.71% 65.24% 

SS6 51.90% 74.76% 79.52% 78.10% 54.29% 53.81% 

SS7 77.62% 79.52% 84.29% 77.62% 60.95% 71.90% 

SS8 71.43% 86.19% 80.00% 80.48% 68.10% 66.67% 

 

Table 6.6 Number of parameters of three classifiers with the clean dataset 

 KNN Random Forests LS-SVM 

 V1 V2 V1 V2 V1 V2 

SS1 13 13 13 16 17 25 

SS2 14 15 16 17 15 27 

SS3 15 17 18 23 30 29 

SS4 16 19 16 37 31 32 

SS5 14 15 15 31 14 27 

SS6 15 17 19 20 34 36 

SS7 16 19 17 28 36 31 

SS8 17 21 17 35 29 38 

 

Table 6.7 K for K-nearest neighbors with the clean dataset 

 KNN 

 V1 V2 

SS1 7 4 

SS2 5 3 

SS3 4 5 

SS4 4 4 

SS5 4 7 

SS6 5 3 

SS7 3 4 

SS8 3 6 
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Table 6.8 Performance of the highest accuracy in each classifier with the clean dataset 

 KNN Random Forests LS-SVM 

Whimper 
Vigorous 

Crying 
Whimper 

Vigorous 

Crying 
Whimper 

Vigorous 

Crying 

Recall 85.71% 92.14% 68.57% 92.14% 42.86% 86.43% 

Precision 84.51% 92.81% 81.36% 85.43% 61.22% 75.16% 

 

 
Figure 6.2 ROC curves with the clean dataset using KNN with V1 and SS3 

 

6.3 Results of Additional Dataset 

Tables 6.9, 6.10, and 6.11 show the classification results with the additional dataset (larger 

dataset), number of parameters, and K for K-nearest Neighbors, respectively. The highest accuracy 

in classifying infant crying is 78.85% using LS-SVM. The ROC curves of LS-SVM with V1 and 

SS1 are shown in Figure 6.3, and recall (sensitivity) and precision of classifying whimper and 

vigorous crying are listed in Table 6.12. 

In the additional dataset, short sampling length episodes have higher performance than long 

episodes. It is caused by longer episodes that containing more noises (non-crying sound) have the 

significant impact in classifying crying. Compared with the result of the original dataset, with my 

method, adapting with K-nearest Neighbors has higher accuracy in classifying whimpering and 

vigorous crying with small dataset, and LS-SVM works better with large dataset. For the 
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performance, the additional dataset raises the recall (sensitivity) of whimper, especially classifying 

with LS-SVM. 

Table 6.9 Classification accuracy of the additional dataset 

 KNN Random Forests LS-SVM 

 V1 V2 V1 V2 V1 V2 

SS1 70.30% 70.97% 72.61% 74.30% 78.85% 75.33% 

SS2 70.79% 66.00% 67.52% 68.24% 71.82% 70.30% 

SS3 70.18% 66.85% 70.85% 67.39% 70.85% 71.88% 

SS4 61.94% 55.76% 70.30% 68.85% 70.73% 73.39% 

SS5 64.85% 60.00% 66.00% 67.45% 72.55% 71.94% 

SS6 60.61% 64.00% 67.39% 66.30% 70.91% 70.18% 

SS7 66.55% 68.30% 69.45% 71.03% 72.36% 74.06% 

SS8 59.03% 61.45% 67.52% 68.79% 70.61% 72.36% 

 

Table 6.10 Number of parameters of three classifiers with the additional dataset 

 KNN Random Forests LS-SVM 

 V1 V2 V1 V2 15 17 

SS1 13 13 17 17 18 25 

SS2 14 15 33 27 17 24 

SS3 15 17 25 26 16 24 

SS4 16 19 18 19 14 15 

SS5 14 15 19 25 25 17 

SS6 15 17 25 33 16 27 

SS7 16 19 28 37 18 23 

SS8 17 21 32 25 15 17 

 

Table 6.11 K for K-nearest neighbors with the additional dataset 

 KNN 

 V1 V2 

SS1 6 8 

SS2 8 3 

SS3 5 4 

SS4 5 5 

SS5 9 7 

SS6 5 9 

SS7 9 4 

SS8 9 5 
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Table 6.12 Performance of the highest accuracy in each classifier with the additional dataset 

 KNN Random Forests LS-SVM 

Whimper 
Vigorous 

Crying 
Whimper 

Vigorous 

Crying 
Whimper 

Vigorous 

Crying 

Recall 63.94% 75.96% 66.20% 80.43% 79.72% 78.19% 

Precision 66.76% 73.61% 71.87% 75.90% 73.41% 83.62% 

 

 
Figure 6.3 ROC curves with the additional dataset using LS-SVM with V1 and SS1 

 

6.4 Comparing Results of Yang’s Speaker Recognition System 

Table 6.13 shows the accuracy in classifying whimpering and vigorous crying using 

Yang’s speaker recognition system with the infants crying dataset. The ROC curves which 

correspond to the highest classification accuracy are shown in Figure 6.4. Recall (sensitivity) and 

precision of classification with the highest accuracy of each dataset are presented in Table 6.14. 

The accuracy of classifying whimpering and vigorous crying with the additional dataset is much 

lower than the other two datasets. The reason for this situation might be the feature compression. 

Since some whimpering episodes are similar to vigorous crying episodes, some information which 

could help the classifier to distinguish whimpering and vigorous crying is lost in the feature 

compression. Yang’s method does not work well in the additional dataset. 

Yang’s method has high recall (sensitivity) for vigorous crying, even higher than my 

method. The highest accuracy of classifying whimpering and vigorous crying using the original 
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dataset with MFCC (80.29%) and the clean dataset with LPCC (90.48%) are slightly higher than 

my method (76.47% while using the original dataset and 90.00% while using the clean dataset). 

However, my method has significant improvement in using the additional dataset which is larger 

than the other two. Also, my crying level assessment system adapting with K-nearest Neighbors 

(85.71%) has higher recall for whimpering than Yang’s speaker recognition system (71.43%) in 

classifying with the clean dataset. 

 

Table 6.13 Classification accuracy with Yang’s speaker recognition system 

 Original Dataset Clean Dataset Additional Dataset 

 LPCC MFCC LPCC MFCC LPCC MFCC 

SS1 75.88% 75.53% 88.10% 76.19% 50.85% 65.45% 

SS2 72.06% 70.59% 90.48% 81.43% 46.97% 66.61% 

SS3 73.53% 47.65% 85.71% 80.95% 62.12% 66.30% 

SS4 64.71% 73.53% 80.95% 76.19% 61.21% 58.61% 

SS5 77.06% 80.29% 81.43% 85.71% 62.42% 58.85% 

SS6 73.24% 68.24% 80.95% 81.43% 63.94% 69.76% 

SS7 76.47% 74.12% 85.71% 77.14% 45.88% 68.48% 

SS8 76.47% 73.53% 85.71% 80.95% 48.30% 60.42% 

 

Table 6.14 Performance of the highest accuracy of Yang’s speaker recognition system 

 Original Dataset Clean Dataset Additional Dataset 

Whimper 
Vigorous 

Crying 
Whimper 

Vigorous 

Crying 
Whimper 

Vigorous 

Crying 

Recall 66.43% 90.00% 71.43% 100.00% 56.34% 79.89% 

Precision 82.30% 79.30% 100.00% 87.50% 67.91% 70.78% 
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(a) 

 
 

(b) 

  

(c) 

  
Figure 6.4 ROC curves of Yang’s speaker recognition system. (a) the original dataset, (b) the clean 

dataset, and (c) the additional dataset 
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CHAPTER 7: SUMMARY AND DISCUSSION 

 

Assessing the level of infants’ crying is subjective and can be inconsistent. Significant 

ambient noises which are recorded during a medical procedure affects classifying performance. In 

this work, I present an automatic crying level assessment system which adapts with K-nearest 

Neighbors, Random Forests, and Least Squares Support Vector Machines to classify whimpering 

and vigorous crying signals under the realistic conditions in NICU. Three different sizes of dataset, 

which are the original dataset, the clean dataset, and the additional dataset, are used in this work. 

The highest accuracies of classifying infant crying signal in whimpering and vigorous crying are 

76.47% which classifies with K-nearest Neighbors using the original dataset, 90.00% with K-

nearest Neighbors using the clean dataset, and 78.85% with Least Squares Support Vector 

Machines using the additional dataset. Recall (sensitivity) for vigorous crying is higher than 

whimpering in my method. 

In comparison, Yang’s speaker recognition system achieves 80.29% accuracy in 

classifying whimpering and vigorous crying with the original dataset, 90.48% with the clean 

dataset, and 69.76% with the additional dataset. Since Yang’s method is more sensitive in 

classifying vigorous crying and the original dataset and the clean dataset have higher ratio of 

vigorous crying and whimpering, the classification accuracies are slightly lower when using my 

method to classify these two dataset. But, my crying level assessment system has significant 

improvement in the additional dataset, which is larger than the other two and with more equally 
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ratio in two classes. Also, my method has higher performance in classifying whimper than Yang’s 

method. 

7.1 Future Research 

In this thesis, not crying is not considered and is filtered out manually. In the future, not 

crying class is going to add in the crying level assessment model. Since determining infants’ crying 

reasons (including in pain) has been discussed [4-8], the model of pain detection with crying can 

be added as the preprocessing to extract crying episodes. Also, this work will combine with other 

project which using other indicators from NIPS, and assess infants’ pain with multiple indicators. 

More subjects are enrolled and collected. Data of approximately 300 infants during acute (few 

minutes) and chronic (more than three hours) painful procedures is planned to collect to enlarge 

the infants crying dataset. 

Next, I am going to implement this model in long term monitoring with the infants under 

chronic painful procedure. In order to use as a monitoring system, the other conditions that lead to 

infants’ crying episodes should be considered. Infants cry not only for pain but also for other 

reasons, such as hunger and wet diaper. Adding these crying models in this system can provide 

better association for nurses in monitoring infants. 

  



www.manaraa.com

  32 

 

 

 

 

 

 

REFERENCES 

 

[1] O. F. Reyes-Galaviz and C. A. Reyes-Garcia, “A system for the processing of infant 

cry to recognize pathologies in recently born babies with neural networks,” in 9th Conf. 

on Speech and Computer (SPECOM’2004), St. Petersburg, Russia, pp. 552-557, Sep. 

2004. 

[2] M. R. Elliott, J. Drummond, and K. E. Barnard, “Subjective Appraisal of Infant Crying,” 

Clinical Nursing Research, vol. 5, no. 2, pp. 237-250, May 1996. 

[3] L. S. Franck et al., “Pain Assessment in Infants and Children,” Pediatric Clinics of 

North America, vol. 47, no. 3, pp. 487-512, Jun. 2000. 

[4] C.-Y. Chang et al., “Application of Incremental SVM Learning for Infant Cries 

Recognition,” in IEEE 18th Int. Conf. on Network-Based Information Systems (NBiS), 

pp. 607-610, Sep. 2015. 

[5] Y. Mima and K. Arakawa, “Cause Estimation of Younger Babies' Cries from the 

Frequency Analyses of the Voice,” in IEEE Int. Symp. on Intelligent Signal Processing 

and Communications (ISPACS’06), pp. 29-32, Dec. 2006. 

[6] R. R. Vempada et al., “Characterization of infant cries using spectral and prosodic 

features,” in IEEE Nat. Conf. on Communications (NCC-2012), pp. 1-5, Feb. 2012. 

[7] M. Petroni et al., “Classification of infant cry vocalizations using artificial neural 

networks (ANNs),” in IEEE Int. Conf. on Acoustics, Speech, and Signal Processing 

(ICASSP-95), vol. 5, pp. 3475-3478, May 1995. 

[8] S. E. Barajas-Montiel and C. A. Reyes-Garcia, “Identifying Pain and Hunger in Infant 

Cry with Classifiers Ensembles,” in IEEE Int. Conf. on Computational Intelligence for 

Modeling Control and Automation, and Int. Conf. on Intelligent Agents, Web 

Technologies and Internet Commerce (CIMCA-IAWTIC’06), vol. 2, pp. 770-775, Nov. 

2005. 

[9] A. Zabidi et al., “Classification of Infant Cries with Hypothyroidism Using Multilayer 

Perceptron Neural Network,” in IEEE Int. Conf. on Signal and Image Processing 

Applications (ICSIPA), pp. 246-251, Nov. 2009. 

[10] O. F. Reyes-Galaviz et al., “Evolutionary-Neural System to Classify Infant Cry Units 

for Pathologies Identification in Recently Born Babies.” in 7th Mexican Inter. Conf. on 

Artificial Intelligent (MICAI’08), Atizapan de Zaragoza, Mexico, pp. 330-335, Oct. 

2008. 



www.manaraa.com

  33 

 

[11] J. Saraswathy et al., “Infant Cry Classification: Time Frequency Analysis,” in IEEE Int. 

Conf. on Control System, Computing and Engineering (ICCSCE), pp. 499-504, Nov. 

2013. 

[12] J. O. Garcia and C. A. Reyes-Garcia, “Mel-frequency cepstrum coefficients extraction 

from infant cry for classification of normal and pathological cry with feed-forward 

neural networks,” in IEEE Proc. of the Int. Joint Conf. on Neural Networks, pp. 3140-

3145, Jul. 2003. 

[13] D. Lederman et al., “On the use of hidden Markov models in infants' cry classification,” 

in IEEE 22nd Conv. of Electrical and Electronics Engineers in Israel, pp. 350-352, Dec. 

2002. 

[14] K. Santiago-Sanchez et al., “Type-2 fuzzy sets applied to pattern matching for the 

classification of cries of infants under neurological risk,” in Emerging Intelligent 

Computing Technology and Applications, pp. 201-210, Springer, Sep. 2009. 

[15] Q. Xie et al., “Automatic Assessment of Infants' Levels-of-Distress from the Cry 

Signals,” IEEE Trans. on Speech and Audio Processing, vol. 4, no. 4, pp. 253-265, Jul. 

1996. 

[16] H.-Y. Yang and X.-X. Jing, “Performance Test of Parameters for Speaker Recognition 

System Based on SVM-VQ,” in IEEE Int. Conf. on Machine Learning and Cybernetics, 

vol. 1, pp. 321-325, Jul. 2012. 

[17] J. Garofolo et al., TIMIT Acoustic-Phonetic Continuous Speech Corpus LDC93S1. 

Web Download. Philadelphia: Linguistic Data Consortium, 1993. 

[18] G. Lebrun et al., “Fast Pixel Classification by SVM Using Vector Quantization, Tabu 

Search and Hybrid Color Space,” in Int. Conf. on Computer Analysis of Images and 

Patterns, pp. 685-692, Springer, Sep. 2005. 

[19] T. Yu et al., “Combine Vector Quantization and Support Vector Machine for 

Imbalanced Datasets,” in IFIP 19th World Congr. on Artificial Intelligence in Theory 

and Practice, pp. 81-88, Springer, Aug. 2006. 

[20] J.A.K. Suykens et al., “Least Squares Support Vector Machines,” in World Scientific, 

Singapore, Nov. 2002. 

[21] J. Luts et al., “A Tutorial on Support Vector Machine-based Methods for Classification 

Problems in Chemometrics,” Analytica Chimica Acta, vol. 665, issue 2, pp. 129-145, 

Apr. 2010. 

[22] P. D. Welch, “The Use of Fast Fourier Transforms for the Estimation of Power Spectra: 

A Method Based on Time Averaging Over Short Modified Periodograms,” IEEE Trans. 

on Audio and Electroacoustics, vol. 15, pp. 70-73, Jun. 1967. 



www.manaraa.com

  34 

 

[23] A. M. Gallo, “The Fifth Vital Sign: Implementation of the Neonatal Infant Pain Scale,” 

J. of Obstetric, Gynecologic, and Neonatal Nursing, vol. 32, issue 2, pp. 199-206, Mar. 

2003.  

[24] M. Goldstein, “k_n-nearest Neighbor Classification,” IEEE Trans. On Information 

Theory, vol. 18, issue 5, pp. 627-630, Jan. 1972. 

[25] A. Liaw and M. Wiener, “Classification and Regression by randomForest,” R news, 

vol. 2/3, pp. 18-22, Dec. 2002. 

[26] V. Svetnik, A. Liaw, C. Tong, J. C. Culberson, R. P. Sheridan, and B. P. Feuston, 

“Random Forest: A Classification and Regression Tool for Compound Classification 

and QSAR Modeling,” J. of chemical information and computer sciences, vol. 43, issue 

6, pp. 1947-1958, Nov. 2003. 

[27] L. Breiman, “Random Forests,” in Machine Learning, Springer, vol. 45, issue 1, pp. 5-

32, Oct. 2001. 

[28] A. Kuh, “Least Squares Kernel Methods and Applications,” in Soft Computing in 

Communications, Springer Berlin Heidelberg, vol. 136, pp. 365-387, 2004. 

[29] L.-Z. Ding, and S. Liao, “Approximate Model Selection for Large Scale LSSVM,” in 

Asian Conf. on Machine Learning, Taoyuan, Taiwan, pp. 165-180, Nov. 2011. 


	University of South Florida
	Scholar Commons
	11-1-2016

	Automatic Pain Assessment from Infants’ Crying Sounds
	Chih-Yun Pai
	Scholar Commons Citation


	tmp.1483554610.pdf.QYzGd

